Alloy Data: Zinc and ZA Die Casting Alloy Properties

Table A-3-14 Typical Material Properties: Zn and ZA Alloys

Typical values based on "as-cast" characteristics for separately die cast specimens, not specimens cut from production die castings.

Commercial: ASTM: Mechanical Properties	Zamak D	ZA Die Casting Alloys					
	No. 2	No. 3 AG-40A	No. 5 AC-41A	No.7 AG-40B	ZA-8	ZA-12	ZA-27
Ultimate Tensile							
Strength							
ksi (MPa)	52 (359)	41 (283)	48 (328)	41 (283)	54 (372)	59 (400)	62 (426)
Yield Strength⊗							
ksi (MPa)	41 (283)	32 (221)	39 (269)	32 (221)	41-43 (283-296)	45-48 (310-331)	52-55 (359-379)
Compressive Yield	(200)	(== -)	(200)	()	(200 200)	(5.0.00.)	(000 010)
Strength®							
ksi	93	60©	87©	60©	37	39	52
(MPa)	(641)	(414)	(600)	(414)	(252)	(269)	(358)
Elongation % in 2 in. (51 mm)	7	10	7	13	6-10	4-7	2.0-3.5
Hardness® BHN	100	82	91	80	100-106	95-105	116-122
Shear Strength	100				100-100	30-100	110-122
ksi	46	31	38	31	40	43	47
(MPa)	(317)	(214)	(262)	(214)	(275)	(296)	(325)
Impact Strength							
ft-lb	35	43©	48©	43®	24-35®	15-27®	7-12®
(J)	(47.5)	(58)	(65)	(58)	(32-48)	(20-37)	(9-16)
Fatigue Strength® ksi	0.5	6.0	0.0	6.0	15		01
(MPa)	8.5 (58.6)	6.9 (47.6)	8.2 (56.5)	6.9 (47.6)	15 (103)	_	21 (145)
Young's Modulus	(0010)	()	(00.0)	()	()		()
psi x 10 ⁶	G	©	©	©	12.4	12	11.3
(GPa)					(85.5)	(83)	(77.9)
Physical Properties							
Density							
lb/in ³	0.24	0.24	0.24	0.24	0.227	0.218	0.181
(g/cm ³)	(6.6)	(6.6)	(6.7)	(6.6)	(6.3)	(6.03)	(5.00)
Melting Range	745 704	740 700	747 707	740 700	707 750	740.040	700 000
°F (°C)	715-734 (379-390)	718-728 (381-387)	717-727 (380-386)	718-728 (381-387)	707-759 (375-404)	710-810 (377-432)	708-903 (375-484)
Specific Heat	(=:0 000)	((=== 000)	(55. 55.)	(101)	(2	.(5.5.64)
BTU/lb°F	0.10	0.10	0.10	0.10	0.104	0.107	0.125
(J/kg°C)	(419)	(419)	(419)	(419)	(435)	(450)	(525)
Coefficient of							
Thermal Expansion µ in./in./°F	15.4	15.0	15.0	15.0	12.0	12.4	14.4
μ m/m°K)	(27.8)	15.2 (27.4)	15.2 (27.4)	15.2 (27.4)	12.9 23.2	13.4 (24.1)	(26.0)
Thermal Conductivity	<u> </u>	()	(-··/	(-··/		,- ···/	()
BTU/ft hr °F	60.5	65.3	62.9	65.3	66.3	67.1	72.5
(W/m°K)	(104.7)	(113)	(109)	(113)	(115)	(116)	(122.5)
Electrical							
Conductivity % IACS	25.0	27.0	26.0	27.0	27.7	28.3	29.7
Poisson's Ratio	20.0	21.0	20.0	21.0	41.1	20.0	23.1
(mm/m)	0.030	0.030	0.030	0.030	0.030	0.030	0.030
\	0.000	3.000	3.000	3.000	2.000	3.000	0.000

 ^{⊕ 0.2%} offset, strain rate sensitive, values obtained at a strain rate of 0.125/min (12.5% per minute)
 ⊕ 0.1% offset
 © Compressive strength
 ⊕ 500 kg load, 10mm ball
 ⊕ ASTM E 23 unnotched 0.25 in. die cast bar
 ⊕ Rotary Bend 5 x 10³ cycles
 ⊕ Varies with stress level: applicable only for short-duration loads. Use 10′ as a first approximation. Source: International Lead Zinc Research Organization.

Alloy Data: Zinc and ZA Die Casting Alloy Characteristics

NADCA
A-3-15-94
Guidelines

Die casting alloy selection requires evaluation not only of physical and mechanical properties, and chemical composition, but also of inherent alloy characteristics and their effect on die casting production as well as possible machining and final surface finishing.

This table includes selected die casting and other special characteristics which are usually considered in selecting a zinc alloy for a specific application.

The characteristics are rated from (1) to

(5), (1) being the most desirable and (5) being the least. In applying these ratings, it should be noted that all the alloys have sufficiently good characteristics to be accepted by users and producers of die castings. A rating of (5) in one or more categories would not rule out an alloy if other attributes are particularly favorable, but ratings of (5) may present manufacturing difficulties.

The benefits of consulting a custom die caster experienced in casting the zinc or ZA alloy being considered are clear.

Table A-3-15 Die Casting and Other Characteristics: Zn and ZA Alloys

(1 = most desirable, 5 = least desirable)

Commercial: ASTM:	Zamak	Zamak Die Casting Alloys					ZA Die Casting Alloys		
	No. 2	No. 3 AG-40A	No. 5 AC-41A	No. 7 AG-40B	ZA-8	ZA-12	ZA-27		
Resistance to Hot Cracking®	1	1	2	1	2	3	4		
Pressure Tightness	3	1	2	1	3	3	4		
Casting Ease	1	1	1	1	2	3	3		
Part Complexity	1	1	1	1	2	3	3		
Dimensional Accuracy	1	1	1	1	2	2	3		
Dimensional Stability	4	2	2	1	2	3	4		
Corrosion Resistance	2	3	3	2	2	2	1		
Resistance to Cold Defects®	2	2	2	1	2	3	4		
Machining Ease & Quality©	1	1	1	1	2	3	4		
Polishing Ease & Quality	2	1	1	1	2	3	4		
Electroplating Ease & Quality®	1	1	1	1	1	2	3		
Anodizing Protection)	1	1	1	1	1	2	2		
Chemical Coating (Protection)	1	1	1	1	2	3	3		

The ability of alloy to resist formation of cold defects; for example, cold shuts, cold cracks, non-fill "woody" areas, swirls, etc.
 B Ability of alloy to withstand stresses from contraction while cooling through the hot-short or brittle temperature range.
 Composite rating based on ease of cutting, chip characteristics, quality of finish and tool life.
 Ability of the die casting to take and hold an electroplate applied by present standard methods. Source: International Lead Zinc Research Organization.